Tribology International 171 (2022) 107570

ELSEVIER

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/triboint

=

TRIBOLOGY
INTERNATIONAL

Tribology International

L)

Check for

Structural design for planetary roller screw mechanism based on the e

developed contact modelling

Qin Yao ™", Mengchuang Zhang »“ ", Shangjun Ma “

@ School of Mechanical Engineering, Suzhou University of Science and Technology, Su Zhou 215009, PR China

b School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, PR China
¢ Yangtze River Delta Research Institute of NPU, Taicang City 215400, PR China

4 Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi’an 710072, PR China

ARTICLE INFO ABSTRACT

Keywords:

Planetary roller screw mechanism
Structural design

Contact characteristics
Multi-objective optimization

The structural design of planetary roller screw mechanism (PRSM) with lower contact stress is beneficial to delay
the fatigue failure and prolong the service life. However, few studies focused on this field and a reasonable
contact model is therefore required due to its complexity structure. In this paper, a developed contact model is
established for PRSM, and a process-based parameterization method is proposed to precisely calculate the
contact characteristics along with the change of parameters. Based on the in-depth study of the parameter

sensitivities of contact characteristics, the structure design to reduce contact stress for PRSM is realized through
the multi-objective optimization under the proposed geometric constraints. The validity of this model is well
verified by finite element method.

1. Introduction

Planetary roller screw mechanism (PRSM) is one of the key actuators
in electromechanical servo system [1], and is widely used in military
and civil fields such as aircraft [2], radio telescope [3], robot [4] and
food processing [5]. As a precision mechanical transmission device, the
PRSM can transfer the motion and force through a series of rollers
making planetary motions between the nut and the screw. The
multi-body and multi-point contacts therefore contribute to a high load
carrying capacity of the PRSM. Meanwhile, each contact point expands
into an elliptical region after loading, and the shape and size of which
will then affect the properties of friction and lubrication [6,7], and
further affect the transmission efficiency [8] and thermal characteristics
[9]. Besides, a large stress can be generated even under a slight load
since the area of the contact ellipse is small enough. The stress distri-
bution in this region, especially the maximum stress, has an important
impact on the fatigue wear [10] and plastic deformation [11], which
considerably determines the service life of PRSM [12]. In addition, the
nonlinearity of contact deformation will contribute to the non-uniform
load distribution among threads by affecting the structural stiffness of
PRSM [13]. Furthermore, the contact positions are also closely related to
the clearances of mating thread surfaces [14,15], the kinematics [16,17]
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and dynamics [18]. Therefore, the contact characteristics analysis of
PRSM is the foundation for the above studies.

In recent years, many beneficial methods and conclusions have been
presented by scholars. The classical method to study the contact char-
acteristics is based on Hertz contact theory, and the key is to obtain the
principal curvatures at the contact point of two objects. The contact
position can be ignored by treating each thread tooth of the roller as an
equivalent ball with approximate principal curvatures, and this method
has been widely used in many literatures [6-9,11-13]. However, the
application of differential geometry theory enables a more accurate
study at the actual contact point considering thread profile features.
Jones et al. [19] established the contact model in PRSM based on the
principle of conjugate surfaces, and analyzed the influence of some
parameters on the curvature radii, contact stress and deformation.
Sandu et al. studied the thread contact geometry and surface assembly in
PRSM [20], and deduced some contact characteristics based on differ-
ential geometry theory and Hertz theory [16]. Similarly, based on the
above two theories, Ma et al. investigated the local contact character-
istics [21] and the static contact with friction [22] of PRSM, and con-
ducted sensitivity analysis of various structural parameters. In addition,
the contact characteristics of PRSM can be studied based on fractal
theory [4], and the finite element method (FEM) is also a common way
of analysis and verification [21-23].
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Nomenclature ¢ =1, = -1 Boolean variable, represents the lower and upper
helical surface of thread
S, N, R denote the screw, nut, roller Cse, Crse  the contact helical surfaces of the screw and roller

S, N, denotes the screw-roller or nut-roller interface
T circular helix

X, X upper and lower contact surface of the thread
r, a) polar coordinate of the projection of a point
Tse, @sc  contact radius and deflection angle of screw

TrRse, @rsc  contact radius and deflection angle of roller on screw-roller
interface

I'ne» e contact radius and deflection angle of nut

rrnes Qrne  contact radius and deflection angle of roller on nut-roller
interface

Te radius of the arc thread profile of the roller

Q primary area

€ plane determined by a point and z-axis

l lead of the thread

w(r, @) parametric equation of the space helical surface

W, W, the first partial derivative of w(r, a)

Wrr, Wras Wao the second partial derivative of y(r, a)
@) thread profile function
o' the first derivative of ¢(r)

¢"(1) the second derivative of ¢(r)

N,n normal vector and unit normal vector of the surface

Kn normal curvature

E,F, G the first fundamental form of a general parametric surface

L, M, N the second fundamental form of a general parametric
surface

e, e the first and second principal directions

e, esp  the first and second principal directions of the screw or nut

egr+1, erro the first and second principal directions of the roller

the first and second principal curvatures

Kk«1, k=5 the first and second principal curvatures of the screw or nut
KRr+1, Kr2 the first and second principal curvatures of the roller
nsc, Ngrse unit normal vectors at the contact point of screw and roller
Npn., nrne Unit normal vectors at the contact point of nut and roller

K1, K2

¢ne> Crve  the contact helical surfaces of the nut and roller

AR helix angle of roller

Q+r, F-g, Fsgy, Fsg normal force, axial force, tangential force and
radial force

YR* angle between the first principal planes of the contact
surfaces

71, 72 angle between x-axis and xg+-axis, angle between x-axis
and xs-axis

f) function of principal curvatures

Xk curvature sum

A, B coefficient

K(e), L(e) complete elliptic integrals of the first and second kinds

a, b semimajor and semiminor axes of the contact ellipse

ke the ratio of b to a

e eccentricity of the contact ellipse

E’ equivalent elastic modulus

8H, OH contact deformation, contact stress

B = (Bs, Br, fn) design variables

B p- lower and upper limit of the design space

Cx design constants

ousr =8sr(P, Cx) objective function of the contact stress between
screw and roller

ounr=8nr(B, Cx) objective function of the contact stress between
nut and roller

as, ag, ay root widths of screw, roller and nut

Cs, Cr, Cy crest widths of screw, roller and nut

€sre, ENRe axial clearance between the thread surfaces to be

contacted

axial clearance from the thread crown of screw or nut to

the corresponding helical surface of roller

€RsT, ErRNT, axial clearance from the thread crown of roller to the
corresponding helical surface of screw or nut

hgs, har, han thread addendum of screw, roller and nut

€STy ENT

% Thread profile of screw

ZN

Thread profile of nut

s
l—— 'N1

~— T'no ——>]

XN

XR

Fig. 1. Structural diagram and independent part coordinate systems of PRSM.
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These studies have promoted the development of PRSM, but there
are still some problems to be improved. Some literatures used complex
coordinate systems with tedious coordinate transformations, which
increased computational costs but the contact characteristics did not
change with the choice of coordinate systems. Also, the existing litera-
tures mainly studied the sensitivity of parameters through mono-factor
analysis, namely, a specific parameter changes within a given and usu-
ally large range while keeping other parameters constant. However, this
method ignores the interaction and restriction between the parameters
of the actual product. Furthermore, threads are the most vulnerable
parts of the PRSM [5,11], but few improvements have been reported.
Therefore, this paper focuses on the structural design of the thread
profiles through multi-objective optimization, so as to pursue lower
contact stress on the screw-roller and nut-roller interfaces simulta-
neously, which is of great significance for slowing down fatigue failure,
preventing plastic deformation and prolonging the service life of PRSM.
The structure of this paper are as follows:

Firstly, in Section 2, the developed contact model of PRSM is
established by using the independent coordinate systems of screw, roller
and nut without coordinate transformation. Based on the differential
geometry theory, continuous tangency conditions and Hertz contact
theory, the contact characteristics of PRSM are deeply studied in a
parameterized and process-based way. The principal curvatures and
directions, local contact geometry and contact parameters at the exact
contact position are calculated in detail. Then, in Section 3, the
parameter sensitivities on the contact characteristics are comprehen-
sively revealed by the design of experiments (DOE). Subsequently, the
structural parameters most sensitive to contact stress are selected as
design variables, and multi-objective optimization under the proposed
geometric constraints is further conducted to obtain the optimal struc-
tural design. Next, the optimization results verified by FEM are dis-
cussed in Section 4. Finally, Section 5 presented the main conclusions of
this paper.

2. Theory and methodology
2.1. Parametric equation

The PRSM consists of a screw, a nut, multiple rollers, two ring gears
and two retainers. The threads of screw, roller and nut are the main load
bearing parts and can be regarded as the continuous convex or concave
structure formed by a specific profile along the circular helix T. There-
fore, the thread surface can be divided into upper and lower spatial
helical surfaces, as shown in Fig. 1, where the blue one represents the
upper contact surface of the thread and is denoted by symbol X, while
the red one represents the lower contact surface of the thread and is
denoted by symbol X;.

By establishing the Cartesian coordinate system o-xyz, the position of
an arbitrary point Q on the thread can be accurately described, in which
the z-axis is on the axis of the corresponding part, and the upper and
lower profiles are symmetrical about the x axis to distinguish the helical
surface X, and X;. Then, the Q is not only on the helical surface, but also
on the plane € determined by Q and z-axis, and its coordinates are (x, y,
). If the angle between the plane xoz and € is @, and the distance from Q
to the z-axis is r, then the polar coordinate of the projection of Q is (r, @)
on a primary area Q of plane xoy, i.e., the helical surface X, or X; can be
obtained by mapping from Q. Therefore, the parametric equation of an
arbitrary point on the spatial helical surface can be expressed as

X=rcosa
y=rsina

z={p(r) +al/(2x)

(rya) € Q (@D)]

where ¢ is a Boolean variable, { = 1 represents lower helical surface of
thread, whereas { = —1 represents the upper one. ¢(r) is the function of
thread profile determined only by the parameter r, specifying that ¢(r)>
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0 in its domain of definition do/2<r < d;/2, where d; and d, refer to the
major and minor diameter of the thread. Besides, dy, P and [ are the
nominal diameter, pitch and lead, respectively. And I=np, n is the starts
of the thread.

In general, the screw and nut are external and internal trapezoidal
multi-start threads with equal number of starts. The roller is a single-
start external thread with a convex arc profile. Then three indepen-
dent coordinate systems of the screw, nut and roller are established
based on their thread characteristics, as shown in Fig. 1, which can
effectively avoid complex coordinate transformation in the subsequent
calculation process. It should be noted that the subscripts s, 5 and g
denote the screw, nut and roller throughout this paper, respectively.
Accordingly, the thread profile function of screw and nut, i.e., ¢s(rs) and
¢n(ry) can be deduced as

s(rs) = (rs —dso/2)tan fg+ (Ps — hs) /2 (ds2/2 < rs < ds/2) 2)

dn(ry) = Py —hy) /2 — (ry —dno/2)tan By (dn2/2 < ry < dwi1/2) 3
Where d+, d+1, d+9, h+, f+ and r+ (=g, y) are the nominal diameter, major
diameter, minor diameter, thread thickness, flank angle and the position
parameter of the point on the thread profile of the screw or the nut. In
Fig. 1, r«g, r+ and r« correspond in turn to the radii of d«, d+; and d«y,
and rys is radii at the external diameter dys of the nut. Similarly, the
parameters described above are denoted by subscript g for the roller.
When the center o, of the arc thread profile is located on the axis of the
roller, its radius can be deduced as r,=dgr(/2sinfg, and the thread profile
function ¢g(rg) is

Pr(rr) =rocos fr+ (Pr—hg)/2 — /1.2 —rk®>  (dra/2 < rg < dri/2)
(C))

2.2. Local contact characteristics

2.2.1. Principal curvatures and directions

The contact between the threads of roller and screw (nut) is actually
the contact between two spatial helical surfaces with different principal
curvatures. Therefore, the principal curvatures are critical for studying
the contact characteristics.

Firstly, the parametric equation Eq.(1) of the space helical surface
can be expressed in vector form as y(r, a)= [rcosa, rsina, {p(r)+al/
(2m)]. Then, for parameters r and « of the helical surface X: v = w(r, @),
(r, a)€Q, the partial derivatives of the first order y, and y, and the
second order yr, Wy, and ¥, can be derived as

v, = > = [cos @, sin a, {¢'(r)]
" 5)
v, =5 [—rsina,rcosa,l/(2m)]
62
2 =T 0.0.cm00)
2
/A
o

Where ¢'(r) and ¢°(r) are the first and second derivatives of thread
profile function to the parameter r, respectively. These two expressions
for the screw, nut and roller can be obtained from Eq.(2)~Eq.(4),
namely:

¢ ’(r )= tanf
{asi”(fs) —o0 @

¢ ,(rN) =—tanf
{qﬁ”(m) —0 ®
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Fig. 2. Static force analysis at contact points.
i (rz) = re-(r — VR2)7]/2 2 2 o2
. T L s ©  (L=w,n =) {7+ /o) + e ()}
b (re) = (r® —re®) "+ e (n7 = 1e?) 1/2

Besides, if y,xy,# 0 at an arbitrary point on the helical surface X:
v =y(r, a), (r,a)eQ, the normal vector N of the surface at that point can
be represented by y,xy,. However, in order to avoid the change of
contact characteristics caused by different choices of upper or lower
helical surfaces, it is necessary to uniformly specify that the normal di-
rection points to the inside of the thread teeth, namely, the normal
vector N is defined as

N={y, x Vo
= [{lsina/(2x) —r cos ag'(r), — ¢l cos a/(2n) — r sin ag'(r),¢r]  (10)

Further, the unit normal vector can be expressed as n=N/|N]|, then
that of screw, nut and roller can be deduced accordingly as

) RIE Igsinag/(27rs) —Csco§astanﬁs r
ng :45{ 1+[is/(27rs)]” +tan /}S} | “iscosas/(2ars) — Essinastan b
1

(€8]

Iysinay /27ry + ¢y cosay tan By :| r

—12
nNng{l+[ZN/(27rrN)]2+tan2ﬂN} . [—lNcosaN/ZﬂrN +{ysinay tanfy
1

12
g sin ap _ Cg COS QgTg
1 2 r 2 -1/2 277:}”1( rez - rRZ
ng="{p |1+ £ )+ <| lgcosag  Cgsinagrg
2mr, 2 — rg? -
1
13

Based on the differential geometry theory [24], the normal curvature
kn of an arbitrary point on the surface X: y = y(r, @), (r, )€Q along the
direction (d)=dr:da at that point is

_ I _dwn _ Ldr* +2Mdrda + Ndo®

g = 14
=TT ay? T Edr + 2Fdrda + Gda? a4

where I and II are the first and second fundamental form of a general
parametric surface, and the coefficients are given by

E=y,y, =1+ )
F =y, y, = (r)/(2r) (15)
G=y, ¥, =r+[/n)

M=y on = =G Cap {7+ 1o + 1 (O} a6
N=y,n= r2¢/(r)'{72 + /o)) + [r¢'(r)]2}71/2

The principal curvatures «; and k5 are the maximum and minimum of
the normal curvature at a given point on the surface, and satisfy the
following relationship

K =xyk, = (LN-M*)/(EG—F?) a7
H = (k| +k&)/2 = (LG—2MF + NE) / (2EG — 2F?) (18)

where K and H represent the Gauss curvature and mean curvature
respectively. The shape of the surface near this point is convex when
K> 0, and its shape is approximately saddle surface when K< 0.
Furthermore, x; and x2 can be expressed by K and H as

K1, kb =H+VH?> - K 19

The directions corresponding to the principal curvatures x; and «;
are the two principal directions of the surface at this point, which are
both orthogonal and conjugate. On this basis, the unit direction vectors
e; and ey of the first and second principal directions can be deduced as

dr
rda + a
€6 = eriw (20)
Wdt + W
Except for F/L=F/M=G/N, there is:
- (EN - GL) + \/(EN — GL)’ — 4(EM — FL) (FN — GM)
& 21)

da 2(EM — FL)

The unit direction vectors e;, es and the unit normal vector n will
form a standard orthonormal basis at any point of the surface. The
planes determined by e;, es and n are called the first and second prin-
cipal planes, and the principal curvatures of the normal section of the
surface on these two planes are x; and o respectively. To avoid confu-
sion, it is specified |k1|< |k2| in this paper, ie., the first principal di-
rection is defined as the direction with small absolute value of curvature,
and vice versa is the second principal direction. Moreover, the principal
curvatures and directions of the surface at a point are exactly the ei-
genvalues and eigenvectors of the Weingarten transformation at that
point. Where, Weingarten matrix is:

-1
W:LE %Hi g] 22)

Then the principal curvatures and principal directions can be
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nee 1" principal plane

(K*z—K*l)/z

Fig. 3. Local contact geometry.

deduced as
ki 0 en en] ' fen e
1 — 11 12 W 11 12 23
{0 Kz] Lzl 622} {921 en (23)
e — ey, ey, 0 — eny, +eny, (24)
leny, + ey, lenay, + enw,|

In this way, k1, k2, e; and ey can be calculated more effectively based
on the programming language.

2.2.2. Contact position

Based on the calculation of principal curvatures at an arbitrary point
on the helical surface, the precise contact positions on screw-roller and
nut-roller interfaces are particularly important for the study of contact
characteristics. Therefore, the static force analysis is performed at the
contact points of PRSM with single thread pairs on both sides of roller, as
shown in Fig. 2.

On the screw-roller interface, the contact radius and deflection angle
of screw are rs. and as., and those of roller are rgs. and ags,, respectively.
Therefore, the parametric coordinates of the contact point on the xsogys
plane of the screw are (rs, as), and that on the xgogyr plane of the roller
are (rrsc, T-Qrsc)- Based on the continuous tangency condition [14], the
unit normal vectors of the two mating surfaces should be collinear, i.e.,
ngc= -nrsc. Combining Eq.(11), Eq.(13) and the installation position of
screw and roller, the quaternion equation is given as

Igsinag, Igsin(m— agse)  Creelrse COS(T— Arse)
— g cosag.tanfg = — = 5
277 27rgse VFe” —Frse
lgcosag, . Igcos(m—agse)  Crelrse SIN(T— Agse)
— — g sinag. tan fg = -
27rge 27T Rse Vet —rrse?

rse sin QAsc = TRsc sin QRse

F'se COS Qs+ s COS Arse = (dso +dro) /2
(25)

where {s.= 1 indicates that the contact point is located on the lower
helical surface of screw, while {s.= —1 indicates that the contact point is
on the upper helical surface. {gs.= -Cs. represents the surface on the
roller in contact with the screw.

Similarly, the unit normal vectors of nut and roller satisfy nyc= -
nrne- Then, the contact radii and the deflection angle, ryc, rryc @ne and
aRNe, are solved by Eq.(26).

Iy sin ay, Ig sin Qgye  {ryve COS ARNCTRNC

27rRNe

~+ Cye cOs ay tan fy =

2 2
27re re” — Irie

Iy cos aye Ig cOS Arne  Crye SN OgneTRNC

27T RN 2

+ {ye sin ay, tan By, =

3
277N — TRNe

Ine SIN Qe = Frae SIN Ay

I'ne COS Ane — Trne COS a,RM = (dN() — dko)/z
(26)

where {gye= -Crsc and {n.= (rsc represent the contact helical surfaces of
the nut and roller.
By contacting the screw and nut on both sides of the roller, the
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rotational motion of the screw is converted into linear thrust of the nut.
From the force analysis illustrated in Fig. 2, the force on the thread at the
contact point can be decomposed into

Q.r = F.z/(cos 0 cos Ag)
F*R, = F*R tan ﬂR

F.gr = F.g tan 6/cos Ag
F.r- = F.g tan f

(x=S$,N) 27)

where the subscript « (=g, ) denotes the screw-roller or nut-roller
interface, Q+r, F+r, F+g¢ and Fsg, represent the normal force, axial
force, tangential force and radial force respectively. Therefore, the
relationship between the contact angle 0, the helix angle 1z and flank
angle g of the roller can be deduced as:

{ tan @ = tan B cos Ag (28)

tan Ag = Pg/7dgo

2.2.3. Local contact geometry

The material near the initial contact point of the two helical surfaces
will deform and expand into an elliptical region after loading, and its
semimajor and semiminor axes are a and b respectively, as shown in
Fig. 3. The coordinate systems with the contact point as the origin are
established within the tangent plane, and the major and minor axis of
the contact ellipse are located on the x-axis and y-axis. The principal
directions e+; and e« of the screw or nut determine the x«-axis and y+-
axis in the o-x+y+ coordinate system, while the xg+-axis and yg+-axis of o-
Xg+ygr+ are collinear with the principal directions eg+; and eg+y of the
roller, respectively. The angle between the first principal planes of the
two contact surfaces is yg+, and yg+€[0,n/2],which is defined by

(+=s:v) (29)

Then, the surface near the contact point of the screw (or nut) and
roller can be expressed as

Vg, = mMinfarccos(e.q-€g.1), T — arccos(e,1-er.1)]

2= — (kaxl +x0y2) /2 (30)
IR = (KR*]x?(* + szyfh)/Z (€3]

where x+ and «+y are the principal curvatures of the screw or nut, kg«
and kg« are the principal curvatures of the roller on the corresponding
contact side. The points (xx, y=, 2+) and (xg+, Yr+, 2g+) can be changed into
(x, y, 2+) and (x, y, 2g+) by coordinate transformation. Therefore, the
distance between these two points before deformation can be expressed
as

h =2z, — 2z, = Ax* +By* + Cxy (32)

C = [(ki2 —Ku1)sin 2y, — (Kgsa — Kger )sin 2y,]/2 (33)

where y; is the angle between x-axis and xg+-axis, y2 is the angle between
x-axis and xs-axis. If the local contact geometry satisfies the triangle in
Fig. 3 [25], then C= 0. Therefore, based on the law of sines and cosines,
there are:

f(K) _ Kia — K1
sin(z — 2yg,,)  2sin2y,

_ KRr«2 = KRsl
~ 2sin2y, 34)

1
fx) = 5 \/(K*z — k)" (Krer — Kot )+ 2(ke2 — K1) (Kiez — Kie1)COS 27,
(35)

where f(«) is the function of principal curvatures. From Eq.(36), y; and y2
can be obtained by

y = %a.rcsin{(lc*z — )sin 27,/ 2600}
(36)

Y, = %arcsin{(lqm — Kgs1)sin 2yp, /[2f(x)]}
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In this case, Eq.(32) can be written as h=Ax? +By2, and the rela-
tionship between the positive constants A and B is

{ A+ B = (kg + kg + K + K1) /2 = 2x/2 37)

B — A = (kg2 — Kpe1)€0S 27 + (K2 — Kiy)cos 2y, ]/2 = f(k)

Therefore, the coefficients A and B can be obtained by the curvature
sum Xx and curvature function f(x), namely,

A=23k/4—f(x)/2
{ B = Sx/4+£(x)/2 (8

2.2.4. Contact parameters

Based on Hertz contact theory, two contacting helical surfaces will
deform under the normal load Q+g (+=s, n), i.e., the points (x, y, z+) and
(x, ¥, zr+) will move the displacement u+ and ugr+ along the normal di-
rection and overlap with each other. It can be described as

Ug, + 1, = 8y — Ax> — By? (39)
where &y is the elastic deformation of two contacts.

Within the contact ellipse x*/a® + y?/b% = 1, the contact stress 6(x,y)
at an arbitrary point (x,y) is

o(x,y) = o/ 1 - (x/a)’ — (v/b)’ (40)

where oy is the maximum value of contact stress in the contact ellipse,
and the contact stress mentioned in the following study refers to og.
Based on the force equilibrium conditions, there is Q.z = [[o(x,y)dxdy,
and after integration oy can be expressed as:

oy = 30.x/(2mab) 41

Furthermore, the displacement u of the point (x,y) on the surface
along the normal direction [25] is

u=[(-2)/@B)]-[] aten / (=& + -] Vazay  42)

where v and E represent Poisson’s ratio and elastic modulus. Similarly,
by integrating, there is

_ boy(1—17) K(e) — L(e) x¥* (& — 1)K(e) + L(e) y*
‘= nE [K(e) - e? a e? b? (43)
/2

K(e) = / (1 — ezsin2¢)71/2d1p (44)
0
/2 12

L(e) = / (1 - e*sin’p) Pdg (45)
0

where e= (1-ko)"/? is the eccentricity of the contact ellipse, and k, = b/a.
K(e) and L(e) are complete elliptic integrals of the first and second kinds.

The Poisson’s ratio and elastic modulus of the screw or nut are v+ and
E-, and these of the roller are vg+ and Eg+, then u- and ug+ can be obtained
from Eq.(43). Substituting them into Eq.(39) gives

boy
E/

(€ = DK(e) + L(e) y* 2 _po
K(e) — 2 2 2 b =6—Ax" — By

(46)

where E = [Eg'(1 —13)+E;}(1- 27!
modulus.

Then, by substituting Eq.(42) into Eq.(47) and comparing the co-
efficients of the same type at both ends of the equation, the contact
parameters are as derived follows:

is the equivalent elastic

A _(1-¢)[K(e) — L(e)]
B~ (2 —1)K(e) + L(e) (47)
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Fig. 4. Flowchart for calculating contact parameters.

\/ )0/ (7B Y k7 48)
b= \/ 3L(e)k.O.r / <7rE’ 3 x) (49)
e) {/9 Z KkezQ*Rz/ [SEZE'ZL(e)} (50)

To sum up, the flowchart for calculating contact parameters is shown
in Fig. 4, which can be solved in a parameterized and process-based way.

2.3. 2.3 Numerical example

The structural and material parameters in literature [13] are further
used as the numerical example in this paper, and the details are shown in
Tables Al and A2 in the appendix. Under an axial load of 300 N, the
lower helical surface Xg; of the screw is in contact with the upper helical
surface Xg, of the roller, and the lower helical surface Zg; of the roller is
in contact with the upper helical surface Xy, of the nut. Based on the
calculation process shown in Fig. 4, the detailed contact characteristics
obtained are listed in Table 1.

The results show the principal curvatures kgj-ks2 < 0 and ky1-kn2 < 0,
indicating that the helical surfaces of screw and nut are shaped like

saddle surface near the contact point. However, kgrsi-kgsz > 0 and
krN1-krN2 > O indicates that the helical surface of roller is convex near
the contact point. Besides, the helical surface of roller is more curved
than that of the screw and nut due to its arc-shaped thread profile,
resulting in kgs1 > ks and kgn1 > kn2. Furthermore, the different cur-
vatures, especially Zxsg> Zkng, ultimately contributes to greater contact
stress and deformation at the screw-roller interface with a smaller
elliptical contact area than those at the nut-roller interface.

In order to visually display the principal directions and contact stress
distribution, the contact characteristics are plotted on the spatial
tangent planes. As shown in Fig. 5, the x.-axis is on the line where the
axis of the screw or nut points to the axis of the roller. At the contact
point of the screw-roller interface, the actual angle between eg; and ers1
is obtuse, therefore the xs-axis is in the opposite direction of es; to
ensure that ygrs€[0,n/2]. In addition, the ys-Axis axis is opposite to ega,
thus making the coordinate system o0-xsys a right-handed system, and the
YRs-axis, yry-axis are also specified in this way.

Moreover, Fig. 5 depicts that the contact point between the nut and
roller is located on the x.-axis, its horizontal projection coordinate of is
(40, 0), and the contact radii are equal to their nominal radii respec-
tively. However, that coordinate of the contact point between the screw
and roller is (24.1193, —1.5662), indicating that there is a certain
deflection angle and the contact radii are greater than their nominal
radii. The main reason for the above phenomenon is that the screw and
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Table 1
Contact characteristics of PRSM (F=300 N).

Contact characteristics Unit Screw-roller interface Nut-roller interface

Principal curvature in mm” ks1 = —3.7845 x 107 kn1 = 8.5970 x 10
the 1st direction B “krs1 = 0.0763 Skra1 = 0.0762

Principal curvature in mm” kso = 0.0298kgso kn2 = —0.0178kgN2
the 2nd direction ! =0.1009 =0.1010

Curvature sum mm’ Yksg = 0.2067 Xknr = 0.1595

1
Contact radius mm rsc = 24.1710rgs, ne = 401rNne = 8
= 8.0336

Contact deflection deg. ase = —3.6995ags. ane = Oarne = 0
angle =-11.2727

Angle between the 1st deg. 7rs = 39.8815 yrn = 40.0207
principal planes

Angle between xgs- deg. yrs1 = 17.4733 yrn1 = 23.9714
axis, xgy-axis and x-
axis

Angle between xs-axis, deg. Yrs2 = 22.3968 yrn2 = 16.0493
xy-axis and x-axis

Semimajor axis of mm ags = 0.4201 agny = 0.4584
contact ellipse

Semiminor axis of mm bgs = 0.2143 bry = 0.2335
contact ellipse

Eccentricity of contact / ers = 0.8601 egny = 0.8606
ellipse

Contact stress MPa opsr = 2255.8601 ounr = 1897.4493

Contact deformation pm Susr = 10.1134 Sunr = 9.2731

roller with different helix angles are in convex contact, while the nut and
roller with equal helix angles are in concave contact with the given
parameters.

3. Mathematical modeling of multi-objective optimization
3.1. Design of experiments

The Design of experiments (DOE) method [11] can effectively
identify the most sensitive factors to the contact characteristics of the
helical surface in PRSM with considering the interaction of all param-
eters, and then provide the choice of design variables for multi-objective
optimization. The flowchart of sensitivity ranking based on DOE is
shown in Fig. 6.

The initial input parameters include structural parameters, material
properties and axial applied load as shown in Table Al and Table A2,

yRs('eRsz) xs('es1)

»

22 234

(a) Contact ellipse of screw and roller
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marked as x = (x1, Xp,eee, X;,00e, X;,),i = 1, 2,eee, n, Where n represents
the total number of input parameters and X; is the ith parameter. The
input parameters are then sampled in the range of x + 3%.x by Latin
hypercube technique [26] with a sampling number of N = 2000.
Consequently, the sampling vectors are generated, denoted as xj= (xyj,
Xoj,0ee, Xjj,00e.Xy), j = 1, 2,eee, N, and x;; is the jth sample of the it input
parameter. Besides, the sampling matrix is recorded as X = (x1, Xg,0ee,
xj, 000, X,) and x;= (X1, Xj2,eee, xij,uo,xiN)T is the sampling vector of x;.

During the execution of DOE, the responses for each x;, including the
contact position, contact radius, deflection angle, principal curvatures
and contact stress, are calculated and recorded as yj= (y1j, yzj,®ee,
Ykj,®®®,Ymj), k = 1, 2,eee, m, where m is the total number of responses.
The matrix for all responses is denoted as Y= (y1, ya,0ee, yi, 000, y,),
and yx= Vk1, Yi2.0e, ykj,-n,ykN)T is the sampling vector of the Kt
response Y.

The data in the matrices X and Y need to be normalized within the
range [— 1,1] to reduce the influence of orders of magnitude on the
analysis, and then the polynomial response surface method is used to fit
these data into the mathematical model yx = ap + > | a;x;. Finally, the
coefficients A; = a;/ Y 1 ,a; in the form of percentage, can reflect the
contribution of each input parameter to the influence of the Kkt response
and are plotted in an ordered bar graph, namely the Pareto graph.

3.2. 3.2 Sensitivity analysis

The horizontal projection of the contact positions on the screw-roller
and nut-roller interfaces of the DOE results is shown in Fig. 7. The blue
asterisk represent the contact positions of sampling points and the red
dot indicates that of the initial parameters. Fig. 7 shows that the contact
positions of sampling points are distributed around the original contact
positions and concentrated in a small area, and the contact radius and
deflection angle of sampling points have changed.

The Pareto graphs of the top ten parameters most sensitive to the
contact characteristics on the screw-roller interface are shown in Fig. 8,
where the blue and red bars represent the positive and negative effects
respectively.

Fig. 8(a) and (b) depict that s contribute most to the deflection angle
of the screw and roller, which have negative effect on the roller but
positive effect on the screw. Besides, dgro, fr, Ps and Py are also sensitive
to the deflection angle, but their effects or contributions are somewhat
different. In Fig. 8(c) and (d), dro, fr and fs play a major role in the

Tangent plane

Ryge

40.7

-0.6 39.3

(b) Contact ellipse of nut and roller

Fig. 5. Principal directions and contact stress distribution.
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Fig. 6. Flowchart of sensitivity ranking based on DOE.
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Fig. 7. Projection of contact positions of sampling points.

contact radius between the screw and roller, while other parameters
have little influence. The effects of dro and fis on the screw are negative
but positive on the roller, and the effect of fy is exact converse.

Fig. 8(e) reveals that the negative effect of drp on the curvature sum
Skgg at the contact point between screw and roller accounts for 50.08%,
while fr and fs positively contribute 39.23% and 9.00% respectively.
Fig. 8(f) shows that iz has the most significant positive effect on the
contact stress oysg, followed by dgo with greater negative sensitivity.
Then, the positive sensitivity of the applied load F is basically consistent
with that of the elastic modulus Eg and Eg. Therefore, a smaller contact
stress can be obtained by reducing the applied load and elastic modulus
based on Hertz contact theory. Furthermore, Poisson’s ratio vs and vg

rank after s, and they have a positive impact on oygg.

Similarly, the Pareto graphs for the contact characteristics on the
nut-roller interface are shown in Fig. 9. It can be concluded from Fig. 9
(a) and (b) that the most sensitive parameters to the deflection angle of
roller and nut are Py, Pg, dro, fr and fy in sequence, in which Py, dgg and
Pn have positive effects, while Pg and fgr have negative effects. Fig. 9(c)
and (d) depict that dgg, fy and pgr are the main contributors to the
contact radius of roller and nut, and dgo, fny and Py are positive effects
and the other two are negative effects. Notably, the influence of struc-
tural parameters on the contact position of nut and roller is almost the
same, which is mainly caused by their concave meshing and equal helix
angle.
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Fig. 8. Pareto graphs for the contact characteristics on the screw-roller interface.
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Fig. 9. Pareto graphs for the contact characteristics on the nut-roller interface.

Fig. 9(e) demonstrates that dgg and g account for 53.13% and similar to that in Fig. 8(f).

41.72% of the negative effects on the curvature sum Zkyg, respectively, In conclusion, the nominal diameter of roller dgg, the pitches Pg, Pg,
and Sy accounts for 4.07% of the positive effects. The parameters shown Py and flank angles fs, fir, fn are sensitive to the contact radius and
in Fig. 9(f) affect the contact stress between the nut and roller in the way deflection angle, because they mainly determine the properties of helical

10
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Fig. 11. Geometric constraints in PRSM.

surfaces. Due to the difference between concave and convex contact, the
contributions and effects of the above parameters on the nut and roller
are almost identical, but the most sensitive parameter has opposite effect
on the screw and roller.

The contour maps of contact stress affected by dgy and pr based on
DOE results are shown in Fig. 10. Obviously, the larger dro and the
smaller fg results in the lower contact stress, because it causes the larger
radius of the arc thread profile of the roller, i.e., the less curved with
smaller curvature sum. Meanwhile, by decreasing fr can also reduce the
normal force acting on the contact point under a given load.

3.3. Constraint conditions

The multi-objective optimization of PRSM is carried out to obtain the
smaller contact stress of screw-roller and nut-roller interfaces simulta-
neously. In order not to change the dimensions and transmission ratio of
PRSM, the flank angles fs, g and Sy are selected as the design variables,
denoted as p = (fs, Br, fn)- The nominal diameter of roller dgg and other
parameters are taken as the design constants, denoted as Cx. Then, the
contact stress can be regarded the high-dimensional and multi-order
nonlinear implicit objective function determined by p and Cx, and
expressed as ogsg =gsr(B, Cx) and oynr=gnr(B, Cx). Moreover, the
geometric constraint conditions are proposed to avoid such phenomena
as thread overlap or stress concentration in the optimized PRSM, as
shown in Fig. 11.

Firstly, the threads of screw, roller and nut should avoid sharpened
crown or intersecting bottom, and the constraints are

11

Py —ay >0
Ccy > 0
where ag, ag and ay are the root widths, and cs, cg and cy are the crest
widths, and can be calculated as

{Ps—as>0 {Ps—a5>0 ©1)

cg >0

as = hs + (dso — ds2)tan fg
52
{Cs = hs — (dso — ds; )tan ffg ©
{aR = hg + \/4r.% — dgy” — dgo cot By (53)
cr = hg + \/4"82 — dri® — dgo cot Pr
ay = hy + (dyi — dyo)tan fy (54)
ey = hy — (dyo — dyo)tan Sy

Secondly, the thread of the roller should be avoided overlapping with
the thread of the screw or nut. By substituting the coordinates of the
contact point into the corresponding parametric equation, the axial
clearance egp. or engc between the thread surfaces to be contacted can be
deduced as

{ esge = Ps(rse) + asels /2 + P (rrse) + Arselr /27 — Pr/2
ENRe

= Py (rne) + aneln /27 + pp(rrne) + Ornelr /2w — Pr/2 (55)

Therefore, the constraint conditions for non-interference of threads
in PRSM are
ESRe > 0 and ENRe > 0 (56)

Thirdly, the stress concentration caused by the contact at the crown
of the threads should also be avoided. Referring to Fig. 11, the axial



Q. Yao et al.

Tribology International 171 (2022) 107570

50+ . .
* Feasible point o * Feasible point
e Infeasible point 4810 | e Infeasible point
* Optimal point I *  Optimal point
Optimal curve 46 \I“ ||| il Optimal curve
S v A
44 I)(
42' s h i
y - " SN % e B
40 S it
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations
(a) History curve of fs (b) History curve of Sz
i 2100
50 * Feasible point - Feasible point R
. . 2050 Infeasibl . &
48- ¢ Infeasible point 5000 * [Infeasible pOIHt .
* Optimal point | _ ] * Optimal point o e
46 Optimal curve | (5 19507~ ~ Optimal curve b
Z = 1900+ .
Q N o e o
44+ = 22
2 1850- =
421 18001 o~
1750 ¥
401 , : : : ' 1700 : : : : : :
0 100 200 300 400 500 2040 2100 2160 2220 2280 2340 2400 2460
Iterations gSR(B’ Cx)

(¢) History curve of Sy

(d) Scatter plot of objective functions

Fig. 12. Multi-objective optimization history graphs of contact stress based on NSGA-II algorithm.

Table 2
Comparison of initial and optimal contact characteristics (F=300 N).

Parameters  Unit Initial Optimum Rate (-%)
Ps deg. 45 42.5388 5.4694
Pr deg. 45 40.4725 10.0612
Pn deg. 45 40.1249 10.8335
Qs Qur N 425.3123 395.4916 7.0115
Sksr mm! 0.2067 0.1911 7.5116
Sknr mm™! 0.1595 0.1464 8.1786
gsr(fB, Cx) MPa 2255.8601 2087.8859 7.4461
avr(B, Cx) MPa 1897.4493 1744.8579 8.0419
SHSR pm 10.1134 9.3779 7.2721
SHNR pm 9.2731 8.5642 7.6441
(Tse, @sc) (mm, (24.1710, (23.8722, -

deg.) —3.6995) —4.1559)
(Trscs ARsc) (mm, (8.0336, (8.3843, -

deg.) —11.2727) —11.8005)
(nes ANe) (mm, (40, 0) (39.9948, -

deg.) —0.0090)
(TrRNe> @RNC) (mm, (8,0) (7.9434, —0.0242) -

deg.)

clearance from the thread crown of screw or nut to the corresponding
helical surface of roller, denoted as est or ent, can be derived as

{ esr = Pr(dro/2 — has) — cs/2

enr = ¢r(dro/2 — hay) — cn/2 (57)

12

where hgs and hgy are the thread addendum of the screw and nut
respectively.

Similarly, the axial clearance eggr or gy, from the thread crown of
roller to the corresponding helical surface of screw or nut, can be
expressed as

{

where hgg is the thread addendum of the roller. Additionally, hys, har
and hgy are given by

st = (Pr — cgr — hs) /2 — hqg tan fig

58
ernt = (Pg — cr — hy) /2 — hug tan By 8

has = (dsi — dso)/2
hag = (dr1 — dgo)/2 (59)
hay = (dyo — dy2)/2

In summary, the constraints for avoiding stress concentration are

o

Based on the above strong constraints, the mathematical model for
multi-objective optimization on the contact stress of screw-roller and
nut-roller interface can be expressed as

ERST > EsRc ERNT > ENRe

60
EsT > EsRre (60)

ENT > ENRc
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Fig. 13. Contact stress and deformation on helical surfaces after structural design.
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Fig. 14. Comparison of the contact characteristics between the initial and optimized PRSM by FEM.
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s.t. { ag—Ps<0;ar —Pr<0;ay — Py <0; —cs <0;—cr <0;—cy <0; —&spe <0;—Enge <05

|
Esre — Ers < 0;€nre — Ernt < 0;sre — Es7 < 05 €Npe —EnT < O; 8 <P <P

where p! and Y are the lower and upper limit of the design space
respectively.

4. Results and discussion
4.1. Optimization results

In the design space of [40°, 50] considering transmission efficiency
[8], the multi-objective optimization of contact stress of PRSM is carried
out based on NSGA-II algorithm [13], in which the maximum generation
and population size are 25 and 20. The history graphs with 501 itera-
tions in total are shown in Fig. 12, and each iteration is calculated by the
parameterized program. The infeasible points indicated in red are those
that do not meet the constraint conditions in the optimization process.
On the contrary, the feasible points are displayed in black, and the one
that minimizes the values of the two objective functions is the optimal
point and is represented by a green pentagram. The optimal curve is
shown by the fitted blue dash line.

The comparison of initial and optimal contact characteristics under
the axial load of 300 N is shown in Table 2. After optimization, the flank
angles of screw, roller and nut are reduced by 5.47%, 10.06% and
10.83% respectively, and the normal forces Qsg and Qug are reduced by
7.01% without changing the applied load. At the contact points of screw-
roller and nut-roller interfaces, the curvature sum decreases by 7.51%
and 8.18%, the corresponding contact stress decreases by 7.45% and
8.04%, and the contact deformation also decreases by 7.27% and 7.64%,
respectively. Additionally, the contact point between the screw and
roller is closer to the axis of the screw while away from the roller, and
the deflection angles of the two increase in the optimized PRSM. The
contact point between the nut and roller deviates slightly from its initial
position and is no longer on their nominal diameters.

After the structural design of PRSM, the contact stress and defor-
mation of the corresponding two helical surfaces under different applied
loads are further shown in Fig. 13. Compared with the initial structure,
the optimal design can effectively reduce the contact stress and defor-
mation of the threads. Importantly, with the increasing sophistication of
precision grinding technology [27], the structurally optimized PRSM
can be manufactured by redesigning the corresponding grinding wheel
profiles.

4.2. Verification

The finite element (FE) model of PRSM with the parameters of the
numerical example is established in ABAQUS 6.14 to verify the validity
of the mathematical model. As shown in Fig. 14, both the screw and nut
are simplified to 1/10 sector portion of the overall structure with one
thread, and the thread of roller only retain the contact parts. The linear
hexahedral element type C3D8R is used to mesh the FE model, and the
contact thread surfaces are further refined to reduce the calculation cost
while ensuring the accuracy. After the grid independence test and
convergence analysis, the global and local mesh sizes are set as 0.8 mm
and 0.035 mm respectively, including 1723,991 nodes and 1599,652
elements in total.

Furthermore, the coordinates and contact surfaces of the screw,
roller and nut are consistent with the numerical example. Both sides of
the screw and the nut are symmetrically constrained, and the bottom
surface of the screw is fixed with six degrees of freedom. Meanwhile,

14

(61)

only the freedom on the z-axis of the screw, roller and nut is released. On
the nut-roller interface, the master surface is assigned to the nut and the
slave surface to the roller, while on the screw-roller interface, the master
surface is assigned to the roller and the slave surface to the screw.
Moreover, the interaction and contact properties for the standard
surface-to-surface contacts are set as small sliding with a friction coef-
ficient of 0.2. To successfully establish the contact relationships, two
static general steps are created. A small axial displacement of 0.5 mm is
firstly applied on the nut to eliminate the clearance between the threads,
and then replaced by an axial force of 300 N in the second step. The FE
model of the optimized PRSM is also established in this way, and the
comparison of FEM results is shown in Fig. 14.

The xz view in Fig. 14 shows that the maximum von Mises stress is
concentrated at a certain depth below the contact surface of the three
parts and there is almost no stress distribution in the rest. Therefore,
threads are more prone to plastic deformation or fatigue failure in
PRSM. The von Mises stress nephogram in xy view clearly shows that the
contact point between the nut and roller is basically located on the
connecting line of their axis, while the contact point between the screw
and roller is below that line.

The maximum von Mises stress on the two contact sides of the roller
decreased by 6.66% and 10.75% from the initial 1374.72 MPa and
1192.23 MPa after optimization. Meanwhile, the initial contact stresses
of the screw-roller and nut-roller interfaces are 2233.56 MPa and
1893.87 MPa, which are reduced to 2081.89 MPa and 1731.79 MPa of
the optimized PRSM, respectively. The above data show that these
stresses can be effectively reduced through the structural optimization
design of PRSM.

Noteworthy, by comparing the contact stress, contact radius and
deflection angle shown in Fig. 14 and Table 2, it can be found that the
relative errors of the results obtained by the analytical method and FEM
are all less than 1%. Besides, some additional numerical examples are
performed, and the results are shown in Table A3 and A4 in the ap-
pendix. By comparing the results with the FEM solutions and published
data, it shows that the relative errors are within the acceptable range,
which fully verifies the validity of the mathematical model. Therefore,
the proposed contact model can be used to calculate the contact char-
acteristics of PRSM with the change of parameters, especially in the
iterative process of structural optimization design.

5. Conclusions

In this paper, the contact characteristics of PRSM are systematically
and comprehensively studied based on the developed contact modeling.
A process-based parameterization method is proposed to accurately
calculate the contact characteristics with arbitrary parameter changes,
which is further used for multi-objective optimization to achieve the
structural design. The mathematical model is well verified by FEM and
the published data.

The results show that among the structural parameters of PRSM, the
nominal diameter of roller dgo, the pitches Pg, Pg, Py and flank angles fs,
Pr, Pn have great influence on the corresponding contact characteristics,
especially fr and dgo contributes significantly to the contact radius,
curvature sum and contact stress. The sensitivity of these parameters to
the nut and roller is basically the same, but the most sensitivity
parameter affects the screw and roller in the opposite way. Under the
proposed constraints of avoiding crown sharpening, bottom
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intersection, thread overlap and stress concentration, the structural
optimization design of PRSM with flank angles as the design variables
can effectively reduce the contact stress and contact deformation of both
screw-roller and nut-roller interfaces. The contact model proposed in
this paper is universal, and the research results are of great significance
to improve the contact performance of the transmission thread pairs.
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Appendix

See Appendix Tables A1-A4.

Table Al
Structural parameters of PRSM.
Parameters Unit Screw Roller Nut
Symbol Value Symbol Value Symbol Value
Nominal diameter mm dso 48 dro 16 dno 80
Major diameter mm ds1 49.43 dr1 17.6 dn1 82.62
Minor diameter mm dso 45.38 dra 14 dno 78.57
Thread thickness mm hg 2 hg 2.4 hy 2
Pitch mm Ps 5 Py 5 Py 5
Flank angle deg. Ps 45 Pr 45 Pn 45
Starts of thread - ng 5 ng 1 ny 5
External diameter mm - - - - dns 100
Table A2
Material properties of PRSM.
Random variables Unit Symbol Value
Elastic modulus MPa Es, Eg, Ex 212000
Poisson’s ratio - Vs, VR, VN 0.29
Yield limit MPa [ 1617
Contact fatigue limit MPa OHlim 2450
Table A3
Contact characteristics with arbitrary structural parameters (F=200 N, elastic modulus 212000 MPa, Poisson’s ratio 0.29).
Structural parameters Nominal diameter (mm) Flank angle (deg.) Number of starts Pitch (mm)
Screw 48 43.2871 5 4.9999
Roller 16 42.0761 1 5.0012
Nut 80 42.6413 5 5.0004
Contact pair (FE model in this paper) Contact characteristics Analytical solution FEMsolution Relative error
CPRESS CPRTSS T Contact radius (mm) 24.0040 24.0208 0.07%
1840, 1834.5853 7
68 1834.5833 Roller 8.2301 8.2359 0.07%
|:,§ R%gg%gg Contact deflection angle (deg.) -4.0247 -4.0408 0.40%
13 122305 pa— -11.6859 -11.6373 0.42%
9203492 o Contact stress (MPa) 1874.8247 1840.6982 1.85%
Toe.3370 7644105
611.5284
S
1533915 .
0.0000
¥ Tx \ S
: Screw-roller interface
CPRESS - Contact radius (mm) 40.0840 40.0897 0.01%
153292 Roller 8.0871 8.0774 0.12%
= }%Eﬁg‘(yﬂ — Contact deflection angle (deg.) -0.0121 -0.0139 0.0018
547114 1037.5660
s 0.0242 00299 0.0057
2}7’({233 A | 778.1745 Contact stress (MPa) 1570.4866 1556.3491 0.91%
5177355
388.3016
258.8678 2
129.4339 129.6958

0.0000
z

0.0000

T Nut-roller interface
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Table A4
Numerical example in Ref.[21] for validation of the contact model in this paper (F=200 N, elastic modulus 212000 MPa, Poisson’s ratio 0.29).
Structural parameters Nominal radius (mm) Flank angle Number of Pitch (mm)
(deg.) starts
Screw 9.75 45 5 2
Roller 3.25 45 1 2
Nut 16.25 45 5 2
Contact pair (Ideal elastic FE model in Ref.[21]) Contact characteristics Analytical Ref.[21] Relative
solution error
CF‘RESBSGSS o . cPRESS Contact radius (mm) 9.8118 9.8173 0.06%
+3. 2+
139300203 3.2598 3.2635 0.11%
12 41e403 | = .5 5510005 (e Contact deflection angle 3.6588 3.6605 0.05%
+2.132e+03 (deg.) 11.6010 11.7030 0.87%
RETCT Contact stress (MPa) 3592.8289 3655 1.70%
s
+3.0460+02
+0.000e+00 K 333508102
Nut-roller interface
Nut_roller lnterface Contact radius (mm) 16.25 16.25 0
CPRESS B copess 3.25 3.25 0
:g;;gg::gg g 431440403 Contact deflection angle 0 0 0
+2.537e+03 o0 (deg.) 0 0 0
+2.283e+03 +2.283e+03
+2 %zea—gg +2.0296+03 Contact stress (MPa) 3037.1383 3144 3.39%
1143583 i1Emeit
+1.268e+03 +1.268e+03
+1.015e+03 +1.015e+03
+7.610e+02 +7.6096+02
+5.073e+02 +5.073e+02
+2.537e+02 +2.536e+02
+0.000e+00 +0.000e+00
References [13] Yao Q, Zhang M, Liu Y, Ma S. Multi-objective optimization of planetary roller
screw mechanism based on improved mathematical modelling. Tribol Int 2021;

[1]1 Zheng S, Fu Y, Wang D, Zhang W, Pan J. Investigations on system integration [14] 11:61);1(1)‘70‘)GS.I\/l}tt;;szé/d01§1<i(1OF.FICOI:/J.trlbol}?t.2921.10109t5 i lysis of planet
method and dynamic performance of electromechanical actuator. Sci Prog 2020; u 4, LiuG, Ma o, fong R, Lim 16. A comprenensive contact analysis ol planetary
103(3):0036850420940923. hiips://doi.org/10.1177/0036850420940023. roller screw mechanism. J Mech Des 2016;139(1):012302-1-012302-11. https://

[2] Arriola D, Thielecke F. Model-based design and experimental verification of a d,()]'org/ 10.1115/1.4034580. . . .

S . . . . . [15] LiuY, Shang Y, Wang J. Mathematical analysis of the meshing performance of
monitoring concept for an active-active electromechanical aileron actuation planetary roller screws applying different roller thread shapes. Adv Mech Eng
tem. Mech Syst Signal P: 2017;94:322-45. https://doi.org/10.1016/j. . .
;’:j;:wl? A ttps://dol.org/ /) 2017;9(5):1-11. https://doi.org/10.1177,/1687814017703009.

[3] Mamaev I, Morozov VV, Fedotov OV, Filimonov V. Precision of a roller screw [16] Sandu S, Biboulet N, Nelias D, Abevi F. Analytical prediction of the geometry of
actuator t;ansmission ft;r a radio tele’scope Russ Eng Res 2015;35(12):919-23 contact ellipses and kinematics in a roller screw versus experimental results. Mech
https://doi.org/10.3103/51068798X15120102. MaC}l Thelo[rly 2013;011381:01913;26. https://doi.org/10.1016/j.

[4] Yang X, Yan M, Zhou Y, Liu R. The dynamic analysis of planetary roller screw in mechmachtheory. . . .
tree-climbing robot. J Phys: Conf Ser 2021;2029(1):012060. htps://doi.org/ [17] LiuY, Wang J, Cheng H, Sun Y. Kinematics analysis of the roller screw based on the
10.1088,/1742-6596,/2029,1 /012060 ’ accuracy of meshing point calculation. Math Probl Eng 2015;2015:10. https://doi.

[5] Guadagno M, Loss J, Pearce J. Open source 3D-printable planetary roller screw for org/1 O'_l 155/2015/303972. . .. . .

; S . . K . . [18] Fu X, Liu G, Ma S, Tong R, Li X. An efficient method for the dynamic analysis of
food processing applications. Technologies 2021;9(2):24. https://doi.org/ !
10.3390/ technologies9020024. planetary roller screw mechanism. Mech Mach Theory 2020;150:103851. https://

[6] Xie Z, Xue Q, Wu J, Gu L, Wang L, Song B. Mixed-lubrication analysis of planetary d()u)rg/lOA101.6/)Amcchmuchthco.ry.zozg193851. .
roller screw. Tribol Int 2019;140:105883. https://doi.org/10.1016/]. [19] Jones MH, Velinsky SA. Contact kinematics in the roller screw mechanism. J Mech
triboint 201'9 105883 ’ Des 2013;135(5):051003. https://doi.org/10.1115/1.4023964.

| S . . . . . [20] Sandu S, Biboulet N, Nelias D, Abevi F. An efficient method for analyzing the roller

[7] Zhou G, Zhang Y, Wang Z, Pu W. Analysis of transient mixed elastohydrodynamic thread try. Mech Mach Th 2018:126:243-64. httns://doi.ore/
lubrication in planetary roller screw mechanism. Tribol Int 2021;163:107158. jcor?gwr,ea g}e OITle.] 1?1, . ec2()] gc()4 Ooefl’y >140:245-04. hitlps://dol.org
https://doi.org/10.1016/j.triboint.2021.107158. -1016/j. mechmachtheory.2018.04.004. . .

. . N . . . . . [21] Ma S, Wu L, Liu G, Fu X. Local contact characteristics of threaded surfaces in a

[8] QiaoG., LiuG., MaS., Shi Z., and Lim TC. Friction Torque Modelling and Efficiency lanet i hani Mech Based Des Struct 2020:48(1):1_26
Analysis of the Preloaded Inverted Planetary Roller Screw Mechanism. ASME ite:ne‘/a/rg ro ejfgr?ggrgffsggésgg 28?9 1251er94js ruc ;48(1):1-26.
International Design Engineering Technical Conferences and Computers and ps://dol.org/ -0. % . RO e . -

L . > . X . [22] Ma S, Wu L, Fu X, Li Y, Liu G. Modelling of static contact with friction of threaded
Information in Engineering Conference. 2017. Cleveland, Ohio, USA. https://doi. ) )
org/10.1115/detc2017-68006. surfaces in a planetary roller screw mechanism. Mech Mach Theory 2019;139:
[9] Qiao G, Liu G, Ma S, Shi Z, Wang Y, Lim TC. An improved thermal estimation 212-36. https://doi.org/10.1016/j.mechmachtheory.2019.04.014.
> N ’ ? ’ . . [23] Abevi F, Daidie A, Chaussumier M, Orieux S. Static analysis of an inverted
model of the inverted planetary roller screw mechanism. Proc Inst Mech Eng Part .
C- J Mech Eng Sci 2018;232(23):4430-46. htps://doi.org/10.1177/ planetary roller screw mechanism. J Mech Robot 2016;8(4):041020-041020-14.
0954406218762961 ’ ’ : : : : https://doi.org/10.1115/1.4033159.
[10] Aurégan G, Fridrici V, Kapsa P, Rodrigues F. Wear behavior of martensitic stainless 241 ](:Izlarl‘ct .PG’le T_T‘zgzgcmmm Geometry: Theory and Applications. Higher
steel in rolling-sliding contact for planetary roller screw mechanism: study of the 95 J‘ ;(ano';(L rccss,t . M hanics. Cambridee Uni ity Press: 1987
WC/C solution. Tribol Online 2016;11(2):209-17. https://doi.org/10.2474/ [25] Johnson KL. Contact Mechanics. Cambridge University Press; :
trol.11.209. [26] Shu Z, Jirutitijaroen P. Latin hypercube sampling techniques for power systems
[11] Yao Q, Liu Y, Zhang M, Liu G, Ma S. Investigation on the uncertain factors of the reliability analysis with renewable energy sources. IEEE T Power Syst 2011;26(4):
elastic—plastic contact characteristics of the planetary roller screw mechanism. 27 ?;066};71:\3/[' httpsz/\;‘; I()l(';)rzi/ 10'11393/ T;WI;S 12 01_1'2113_3_80' indi £ mi h
Proc Inst Mech Eng Part C- J Mech Eng Sci 2019;233(5):1795-806. https://doi. [27] Guo B, Meng Q, Wu G, Zhao Q, Li S. Parallel axis precision grinding of micro-toot
org/10.1177,/0954406218772607. internal thread with the coarse-grains CBN wheels. J Manuf Process 2022;74:
[12] Du X, Chen B, Zheng Z. Investigation on mechanical behavior of planetary roller 474-85. https://doi.org/10.1016/j jmapro.2021.12.042.

screw mechanism with the effects of external loads and machining errors. Tribol
Int 2021;154:106689. https://doi.org/10.1016/].triboint.2020.106689.

16


https://doi.org/10.1177/0036850420940923
https://doi.org/10.1016/j.ymssp.2017.02.039
https://doi.org/10.1016/j.ymssp.2017.02.039
https://doi.org/10.3103/S1068798X15120102
https://doi.org/10.1088/1742-6596/2029/1/012060
https://doi.org/10.1088/1742-6596/2029/1/012060
https://doi.org/10.3390/technologies9020024
https://doi.org/10.3390/technologies9020024
https://doi.org/10.1016/j.triboint.2019.105883
https://doi.org/10.1016/j.triboint.2019.105883
https://doi.org/10.1016/j.triboint.2021.107158
https://doi.org/10.1115/detc2017-68006
https://doi.org/10.1115/detc2017-68006
https://doi.org/10.1177/0954406218762961
https://doi.org/10.1177/0954406218762961
https://doi.org/10.2474/trol.11.209
https://doi.org/10.2474/trol.11.209
https://doi.org/10.1177/0954406218772607
https://doi.org/10.1177/0954406218772607
https://doi.org/10.1016/j.triboint.2020.106689
https://doi.org/10.1016/j.triboint.2021.107095
https://doi.org/10.1115/1.4034580
https://doi.org/10.1115/1.4034580
https://doi.org/10.1177/1687814017703009
https://doi.org/10.1016/j.mechmachtheory.2018.09.013
https://doi.org/10.1016/j.mechmachtheory.2018.09.013
https://doi.org/10.1155/2015/303972
https://doi.org/10.1155/2015/303972
https://doi.org/10.1016/j.mechmachtheory.2020.103851
https://doi.org/10.1016/j.mechmachtheory.2020.103851
https://doi.org/10.1115/1.4023964
https://doi.org/10.1016/j.mechmachtheory.2018.04.004
https://doi.org/10.1016/j.mechmachtheory.2018.04.004
https://doi.org/10.1080/15397734.2019.1615944
https://doi.org/10.1016/j.mechmachtheory.2019.04.014
https://doi.org/10.1115/1.4033159
http://refhub.elsevier.com/S0301-679X(22)00143-8/sbref23
http://refhub.elsevier.com/S0301-679X(22)00143-8/sbref23
http://refhub.elsevier.com/S0301-679X(22)00143-8/sbref24
https://doi.org/10.1109/TPWRS.2011.2113380
https://doi.org/10.1016/j.jmapro.2021.12.042

	Structural design for planetary roller screw mechanism based on the developed contact modelling
	1 Introduction
	2 Theory and methodology
	2.1 Parametric equation
	2.2 Local contact characteristics
	2.2.1 Principal curvatures and directions
	2.2.2 Contact position
	2.2.3 Local contact geometry
	2.2.4 Contact parameters

	2.3 2.3 Numerical example

	3 Mathematical modeling of multi-objective optimization
	3.1 Design of experiments
	3.2 3.2 Sensitivity analysis
	3.3 Constraint conditions

	4 Results and discussion
	4.1 Optimization results
	4.2 Verification

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix
	References


